What you will find on this page – definitions and explanations of “carbon” terms and what they mean for climate change response: LATEST NEWS; global emissions 2022 the highest (report); the carbon problem in six easy stepsworldometer stats for carbon emissions; understanding carbon budgets; how is CO2 measured – Keeling Curve (video); emissions going up again (report); global carbon budget 2017 (infograph); carbon clock tickingmaking sense of Govt data dumpclimate censorship – what is to hide? global greenhouse gases still rising (REPORT); temperature and CO2 emissions in context (animated video); Global emissions flat 3rd year in row43 greenhouse gases driving global warming; carbon budget 2017 (infograph): follow CO2 through atmosphere (video); the rich outsourcing emissions to the poorcarbon dioxide levels continue reaching new highsunderstanding the carbon cycles – slow & fast; atmospheric CO2 misconceptions; carbon budget; global carbon emission footprint (interactive graph); carbon map – who’s responsible; 800,000 history of carbon dioxide (video); CO2 keeps rising emissions flat – why?; are we permanently above 400ppm?; CO2 equivalent what is it; GHG emission data;  CO2 & CO2 – e measurement analysis; emission reduction not all what it seemsclimate system lag time; what is carbon neutral/offsetting (video, report & recommendations);  carbon pricing; how carbon credits work – Narmboolville; also refer to pages “the science“, “Two degree “safe limit” and “mitigation battle” as the issues are closely related

Latest News

1 56 57 58 59 60 61

End Latest News

What does “carbon ……” mean?

The CO2 problem in six easy steps (2022 Update)

Step 1: There is a natural greenhouse effect.

 

 

 

 

 

 

 

 

 

 

 

Step 2: Trace gases contribute to the natural greenhouse effect.

 

 

 

 

 

 

 

 

 

 

Step 3: Trace greenhouse gases have increased markedly due to human emissions

 

 

 

 

 

 

 

 

 

 

Step 4: Radiative forcing is a useful diagnostic and can easily be calculated

 

 

 

 

 

 

 

 

 

 

 

Step 5: Climate sensitivity is around 3ºC for a doubling of CO2

 

 

 

 

 

 

Step 6: Radiative forcing x climate sensitivity is a significant number

11 November 2022, Carbon Brief: Analysis: Global CO2 emissions from fossil fuels hit record high in 2022

Global carbon dioxide emissions from fossil fuels and cement have increased by 1.0% in 2022, new estimates suggest, hitting a new record high of 36.6bn tonnes of CO2 (GtCO2). The estimates come from the 2022 Global Carbon Budget report by the Global Carbon Project. It finds that the increase in fossil emissions in 2022 has been primarily driven by a strong increase in oil emissions as global travel continues to recover from the Covid-19 pandemic. Coal and gas emissions grew more slowly, though both had record emissions in 2022.

The 17th edition of the Global Carbon Budget, which is published today, also reveals:

  • The remaining carbon budget keeping warming below 1.5C will be gone in nine years, if emissions remain at current levels.
  • The increase in global fossil emissions in 2022 was driven by a small increase in US emissions and a larger increase in Indian and rest-of-the-world emissions. Chinese emissions saw a small decline, while EU emissions remained largely unchanged from 2021.
  • Most of the increase in emissions was from oil. Coal saw a slight increase in emissions – somewhat smaller than might have been expected given the global energy crisis – while gas emissions remained flat and emissions from cement saw a slight decline
  • Global CO2 concentrations set a new record of 417.2 parts per million (ppm), up 2.5ppm from 2021 levels. Atmospheric CO2 concentrations are now 51% above pre-industrial levels.
  • The effects of climate change have reduced the CO2 uptake of the ocean sink by around 4% and the land sink by around 17%. Access the full report here

 

Worldometer Stats for carbon emissions – where Australia sits

According to WORLDOMETER stats Australia sits 14th in carbon emissions in the world; 3rd highest in CO2 emissions per capita at 17.10 tons, behind Canada and Luxembourg (OECD Countries). Compared to other per capita outcomes for: China 7.38; US 15.52; UK 5.55; New Zealand 7.14; India 1.91. The world average is 4.79 tons per person. Access more stats here

How Scientists measure carbon dioxide – Keeling Curve history

12 April 2018: In honor of the 60th anniversary of the Keeling Curve, Ralph Keeling of the Scripps CO2 Program shows how scientists make carbon dioxide measurements and gives a guided tour of the original instruments his father, Charles David Keeling, developed to start the famous record known as the Keeling Curve. In 2018, carbon dioxide levels are expected to exceed 410 parts per million (ppm) on a regular basis for the first time in human history.  Sixty years earlier at the beginning of the records, CO2 levels were at 315 ppm. Source: Scripps Institution of Oceanography

Understanding carbon budgets and their implication

6 August 2019 Real Climate: Everyone is talking about emissions budgets – what are they and what do they mean for your country? Our CO2 emissions are causing global heating. If we want to stop global warming at a given temperature level, we can emit only a limited amount of CO2. That’s our emissions budget. I explained it here at RealClimate a couple of years ago (access full explanation here):

But beware of using those end dates instead of budgets, because it is not the end date but the cumulative emissions that count! A simple illustration: if you don’t achieve reductions in the next ten years but keep emissions constant, and reduce linearly after that, the result is that you have to reach zero ten years earlier! See the next figure.

Detrimental effect of wait-and-see policy. The blue emissions path stays within a 500 Gt budget, but the solid red path emits 700 Gt. To stick to the 500 Gt budget despite ten years of waiting, emissions need to reach zero by 2035 rather than 2045 (dashed line).

Cracking a climate conundrum

10 May 2018, Yale climate connections CO2 emissions leveled off between 2014 and 2016. But annual growth of CO2 in the atmosphere rose to more than 50 percent above that of past decades. What explains the contradiction? In 2015, we earthlings – some 7.5 billion of us – discharged 36 billion tons of carbon dioxide into the air from many tailpipes and smokestacks. That is about the same amount of planet-warming gas belched out in 2014, and the figure remained largely unchanged in 2016. After a century of exponential growth in the mass of carbon dioxide ejected into the air, the leveling-off of the output caught many observers by surprise. It’s explained partly by widespread substitution of natural gas for coal in electricity production and by expanded use of wind and solar energy. Although the amount of CO2 ejected into the air leveled off in 2015, the quantity accumulating in the atmosphere did not let up. Rather, it spiked. Indeed, the concentration of the gas increased that year by 3 parts per million (ppm), 50 percent more than in the previous year and the average annual increase of the prior four decades. Researchers hadn’t observed an increase so large since they began systematic measurements of CO2 in the atmosphere back in 1958. The amount of CO2 in the air probably hadn’t surged so much in a single year since at least the end of the last ice age – 10,000 years ago. Read more here

Oops – we are going up again!

Average annual growth in energy demand by fuel

March 2018, Global Energy & CO2 Status Report – The latest trends in energy and emissions in 2017. Global energy demand grew by 2.1% in 2017, according to IEA preliminary estimates, more than twice the growth rate in 2016. Global energy demand in 2017 reached an estimated 14 050 million tonnes of oil equivalent (Mtoe), compared with 10 035 Mtoe in 2000. 

Fossil fuels met over 70% of the growth in energy demand around the world. Natural gas demand increased the most, reaching a record share of 22% in total energy demand. Renewables also grew strongly, making up around a quarter of global energy demand growth, while nuclear use accounted for the remainder of the growth. The overall share of fossil fuels in global energy demand in 2017 remained at 81%, a level that has remained stable for more than three decades despite strong growth in renewables. Improvements in global energy efficiency slowed down. The rate of decline in global energy intensity, defined as the energy consumed per unit of economic output, slowed to only 1.7%* in 2017, much lower than the 2.0% improvement seen in 2016. The growth in global energy demand was concentrated in Asia, with China and India together representing more than 40% of the increase. Energy demand in all advanced economies contributed more than 20% of global energy demand growth, although their share in total energy use continued to fall. Notable growth was also registered in Southeast Asia (which accounted for 8% of global energy demand growth) and Africa (6%), although per capita energy use in these regions still remains well below the global average.

According to the IEA, 2017’s increase in emissions was the equivalent of adding 170 million cars to the roads and was the result of “robust global economic growth of 3.7%, lower fossil-fuel prices, and weaker energy efficiency efforts” all of which also led to the aforementioned increase in energy demand. Read More here

The Global Carbon Project was formed to assist the international science community to establish a common, mutually agreed knowledge base supporting policy debate and action to slow the rate of increase of greenhouse gases in the atmosphere. For summary highlights go here

How fast is the carbon clock ticking?

The MCC (Mercator Research Institute on Global Commons & Climate Change) carbon clock demonstrates just how much carbon can be released into the atmosphere if global warming shall be limited to 1.5°C, or 2°C with high probability. By selecting a choice of temperature targets and estimates, you can see how much time remains in each scenario. In the Paris Agreement, all countries worldwide decided to limit global warming to well below 2°C (ideally as much as 1.5°C) compared to pre-industrial levels. This is extremely ambitious and essentially means that we are tightening our carbon budget. In concrete terms, it means that reaching the 2°C target with a medium probability would allow us to emit at maximum only about 720 gigatons of CO2 between 2018 and 2100 into the atmosphere (stand 1.1.2018).¹ However, at present the world is still emitting 40 gigatons of CO2 every year.⁴ This corresponds to 1268 tons per second. In that context, the remaining budget is shrinking rapidly. Read More here and access clock

Making sense of the Australian government’s data dump: Carbon pollution and climate review

19 December 2017, Climate Council: Today the Australian government released a range of documents and data including the Quarterly Emissions Update, the 2017 Review of Climate Change Policies and Australia’s Emissions Projections. We read them all, so here’s the lowdown:

Topline Facts:

  • Australia’s carbon pollution levels have increased for a third consecutive year.
  • The Australian government has proposed no new credible policies to help cut Australia’s pollution levels.
  • We are in the critical window of opportunity to act on climate change, yet the Federal Government’s climate policy is failing.

 

What is the Government’s 2017 Review of Climate Change? The Federal Government undertook a review of its national climate change policies and indicated it would release a final report by the end of 2017. The aim of the year-long review was to ensure Australia can meet its 2030 emissions reduction target and Paris Agreement commitments. The Federal Government released the review report today. You can check out the whole document here. It’s important to note that the Australian Government’s current pollution reduction target is to cut greenhouse gas emissions by 26 to 28 per-cent below 2005 levels by 2030. This target is out of line with the science and out of line with action being taken by our major trading partners and allies around the world, from global powerhouses such as Europe and California. This target will not do enough to reduce the impacts of climate change that Australia is already experiencing, such as extreme weather events like severe heatwaves, flooding and storms. You can read the Climate Council’s submission to the review here. Read More here

Quarterly Update of Australia’s National Greenhouse Gas Inventory: June 2017 Incorporating NEM electricity emissions up to September 2017 provides estimates of Australia’s national inventory of greenhouse gas emissions up to the June quarter of 2017, and electricity emissions from the National Electricity Market (NEM) up to the September quarter 2017.

Access full report here

Climate Censorship – why hide it??

6 December 2017, The Climate Council, is calling for the backlog of Australia’s greenhouse gas pollution data to be urgently released, with the Federal Government failing to provide an update for almost 6 months. Climate Council CEO, Amanda McKenzie said the Federal Government had again delayed the release of the latest quarterly data report, highlighting the current state of Australia’s pollution levels (June 2017 quarter), after a rise of 1.6 per cent was recorded back in March. “At a time when Australia’s federal climate and energy policy remains in limbo, it has never been more important for transparent pollution information. Continuing to keep the information hidden just raises questions about what there is to hide,” she saidFor several years, there’s been a consistent delay from the Department of the Environment and Energy’s National Greenhouse Gas Inventory on releasing vital emissions data. This raises serious concerns over the Federal Government’s transparency on Australia’s pollution levels.” “The only way the public can keep the government accountable on climate progress is if they have transparent processes for releasing emissions data.”

AS THE GOVT WON’T TELL US….11 December 2017, The Guardian, Australia’s greenhouse gas emissions highest on record. Australia’s emissions over the past year were the highest on record, when relatively unreliable emissions from land use are excluded, according to estimates by the carbon consultancy NDEVR  Environmental. Greenhouse gas emissions continued to rise in recent quarters, with the most recent the second highest for any quarter since 2011, despite electricity emissions being driven down by wind generation. The government’s official public release of data on emissions is now six months behind and NDEVR Environmental’s estimations attempt to mirror that methodology.

Released in partnership with Guardian Australia, the results have proven very accurate when compared with data eventually released by the federal government. The ever-increasing emissions are taking Australia further from both its carbon-reduction commitments made in Paris and the much bigger reductions demanded by the science-based targets, recommended by the government’s Climate Change Authority. Read More here

Global greenhouse gases still rising

6 November 2017, VOX, There’s a huge gap between the Paris climate change goals and reality. Every year, the United Nations Environment Program (UNEP) releases an “Emissions Gap” report, on the remaining disparity between the world’s stated ambitions on climate and the actions it is currently taking. The 2017 edition of the report was released in advance of the next round international climate talks, which began Monday in Bonn, Germany. And it reports that the gap remains … substantial. Researchers calculate that for a reasonable chance of hitting our goal, global greenhouse gas emissions must peak by 2020 and the gap must be closed by 2030 — in other words, if we are not on the right trajectory by 2030, all hope of 1.5 degrees is lost and 2 degrees is almost certainly out of reach as well. Let’s run through a few of the top-line conclusions of the report, which was assembled by an international team of scientists based on the most recent published science. Read More here

emission trajectories

 

 

 

WMO GREENHOUSE GAS BULLETIN No. 13 | 30 October 2017,  The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2016. Access full report here

 

 

 

 

 

13 June 2017, The Conversation, There are those who say the climate has always changed, and that carbon dioxide levels have always fluctuated. That’s true. But it’s also true that since the industrial revolution, CO₂ levels in the atmosphere have climbed to levels that are unprecedented over hundreds of millennia. So here’s a short video we made, to put recent climate change and carbon dioxide emissions into the context of the past 800,000 years.


Read More here

Global CO2 emissions flat for the third year in a row, even as energy demand rose

Video thumbnail for BP Statistical Review of World Energy 2017 - for external use14 June 2017, Carbon Brief, The world added a record amount of energy from renewable sources in 2016 and global coal use fell again, according to the 2017 BP Statistical Review of World Energy, published earlier this week. This helped to keep global CO2 emissions flat for the third year in a row, even as energy demand rose. The record 53 million tonnes of oil equivalent (Mtoe) added by non-hydro renewables met a third of the increase in global energy demand. Global coal use fell by 53Mtoe (1.4%) and is now 4% below the 2014 peak. Meanwhile, coal production fell by a record 231Mtoe (5.9%), as massive output declines continued in the US and China worked to reduce overcapacity and combat air pollution. Carbon Brief runs through BP’s new data and highlights some of the key changes in global energy production and use last year. Record renewables Non-hydro renewable energy sources, such as wind and solar, had a record year in 2016, adding 53Mtoe. They were the fastest-growing source of energy, up 14%, in line with average growth of 16% per year over the decade to 2015. Together with nuclear and hydro, low carbon energy supplied more than half of the net increase in global energy demand between 2015 and 2016. Read More here CLICK ON IMAGE TO ACCESS VIDEO

June 2017, Australia Institute National Energy Emissions Audit. Providing a comprehensive, up-to-date
indication of key greenhouse gas and energy trends in Australia. Access Report here

1 June 2017, The Conversation, Global stock-take shows the 43 greenhouse gases driving global warming 

The most comprehensive collection of atmospheric greenhouse gas measurements, published today, confirms the relentless rise in some of the most important greenhouse gases. The data show that today’s aggregate warming effect of carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) is higher than at any time over the past 800,000 years, according to ice core records. Building on half a century of atmospheric measurements by the international research community, we compiled and analysed the data as part of a group of international scientists, led by Malte Meinshausen from the University of Melbourne in collaboration with CSIRO. Together, the data provide the most compelling evidence of the unprecedented perturbation of Earth’s atmosphere. They clearly show that the growth of greenhouse gases began with the onset of the industrial era around 1750, took a sharp turn upwards in the 1950s, and still continues today. Research has demonstrated that this observed growth in greenhouse gases is caused by human activities, leading to warming of the climate – and in fact more than the observed warming, because part of the effect is currently masked by atmospheric pollution (aerosols). The new collection of records comes from measurements of current and archived air samples, air trapped in bubbles in ice cores, and firn (compacted snow). The data cover the past 2,000 years without gaps, and are the result of a compilation of measurements analysed by dozens of laboratories around the world, including CSIRO, the Bureau of Meteorology’s Cape Grim Station, NOAA, AGAGE and the Scripps Institution of Oceanography, among others. Read More here


Global carbon budget 2017 (Global Carbon Project) 

Access Global Carbon Project here for more details

Figures from the Global Carbon Budget 2017: This web page is only a repository for the figures presented in the Global Carbon Budget 2017. For details and explanations, please refer to the Global Carbon Project’s website.

Follow CO2 through atmosphere

NASA, the US space agency, has released an “eye-popping” three-dimensional animation showing carbon dioxide emissions moving through the Earth’s atmosphere over the course of a year. It says the 3-D visualisation is “one of the most realistic views yet” of the “complex patterns in which carbon dioxide in the atmosphere increases, decreases and moves around the globe”. The data used to produce the visualisation was collected by NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite from September 2014 to September 2015. The data was then modelled and visualised by the Global Modeling and Assimilation Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Source: To view more NASA carbon dioxide videos go here

How rich countries “outsource” their CO2 emissions to poorer ones

18 April 2017, VOX, For years now, carbon dioxide emissions in the United States and Europe have been steadily falling — an encouraging sign of progress in the fight against global warming. But on the flip side, emissions in developing countries like China and India have been growing at a very rapid clip. So one natural question to ask is just how closely these two things are related. That is, are rich countries just “outsourcing” their climate pollution to poorer countries, by shifting their factories overseas? The answer is basically yes. But as you might guess, there are all sorts of interesting twists and nuances that make this more complicated than it seems. The Global Carbon Project, a major effort to measure CO2 emissions worldwide, tries to measure this outsourcing effect by estimating, for each country, “production emissions” (that is, the CO2 produced within a country’s borders) and “consumption emissions” (the CO2 emitted around the world in the course of manufacturing goods for that country). As you can see on the graph below, wealthy OECD nations “consume” a fair bit more CO2 than they actually emit within their own borders. They have indeed outsourced a big chunk of their climate pollution to the developing world. Read More here 

Carbon Dioxide continues to reach new highs

4 April 2017, Climate Central, Current carbon dioxide levels are unprecedented in human history and are on track to climb to even more ominous heights in just a few decades. If carbon emissions continue on their current trajectory, new findings show that by mid-century, the atmosphere could reach a state unseen in 50 million years. Back then, temperatures were up to 18°F (10°C) warmer, ice was almost nowhere to be seen and oceans were dramatically higher than they are now. The implications of the research, published on Tuesday in Nature Communications, are some of the starkest reminders yet that humanity faces a major choice to curtail carbon pollution or risk pushing the climate outside the bounds that have allowed civilization to thrive. Atmospheric levels of carbon dioxide have varied for millennia, fluctuating largely on natural cycles. Humans have added dramatically more carbon dioxide to the atmosphere since the Industrial Revolution, though, raising carbon dioxide from 280 parts per million to nearly 410 parts per million. That has turned the thermostat up about 1.8°F (1°C) and caused a host of other impacts. Read More here

Understanding the carbon cycles – slow & fast

NASA Earth Observatory: This diagram of the fast carbon cycle shows the movement of carbon between land, atmosphere, and oceans. Yellow numbers are natural fluxes, and red are human contributions in gigatons of carbon per year. White numbers indicate stored carbon. (Diagram adapted from U.S. DOE, Biological and Environmental Research Information System.)

Draft diagram of the carbon cycle.

Carbon flows between each reservoir in an exchange called the carbon cycle, which has slow and fast components. Any change in the cycle that shifts carbon out of one reservoir puts more carbon in the other reservoirs. Changes that put carbon gases into the atmosphere result in warmer temperatures on Earth. There are both slow and fast carbon cycles. Without human interference, the carbon in fossil fuels would leak slowly into the atmosphere through volcanic activity over millions of years in the slow carbon cycle. By burning coal, oil, and natural gas, we accelerate the process, releasing vast amounts of carbon (carbon that took millions of years to accumulate) into the atmosphere every year. By doing so, we move the carbon from the slow cycle to the fast cycle. In 2009, humans released about 8.4 billion tons of carbon into the atmosphere by burning fossil fuel. 

Access NASA’s excellent explanations of the full carbon cycles – slow and fast – here

Common climate misconceptions: atmospheric carbon dioxide

16 December 2010, Yale Climate Connections: Understanding the carbon cycle is a key part of understanding the broader climate change issue. But a number of misconceptions floating around the blogosphere confuse basic concepts to argue that climate change is irrelevant because of the short residence time of carbon molecules in the atmosphere and the large overall carbon stock in the environment.

It turns out that while much of the “pulse” of extra CO2 accumulating in the atmosphere would be absorbed over the next century if emissions miraculously were to end today, about 20 percent of that CO2 would remain for at least tens of thousands of years. The complex global carbon cycle process involves carbon absorption and release by the atmosphere, oceans, soils, and organic matter, and also emissions from anthropogenic fossil fuel combustion and land-use changes. The figure below shows the best estimate of annual carbon fluxes from main sources and sinks. (Figure is from Oak Ridge National Laboratories (Units in gigatons of carbon).

Global Carbon CycleAt first glance, it may seem that the narrow black arrows representing anthropogenic sources are relatively insignificant, making up only a few percent of the total carbon released to the atmosphere in any given year. To understand why anthropogenic emissions are of concern, it is important to think of the carbon cycle as a balance of sorts; every year around 230 gigatons of carbon dioxide are released to the atmosphere, and around 230 gigatons of carbon dioxide are absorbed by the world’s oceans and biosphere. This balance forms an equilibrium of sorts, with the level of atmospheric carbon dioxide remaining largely unchanged over time. However, anthropogenic emissions throw this process out of kilter, adding a new source of emissions unmatched by additional sinks.

Read More here

Carbon Budget

At the 21st Conference of the Parties to the Climate Change Convention, in Paris in December 2015, the international community agreed to “pursue efforts” to limit temperature rise to no more than 1.50 C above the pre-industrial average, in order to prevent the dangerous effects of climate change.The challenge of this task is quite extraordinary. carboncountdownonepointfivedegreesThe IPCC has identified a range of ‘carbon budgets’ which define the maximum amount of carbon dioxide that can be emitted for any given likelihood of remaining below a given temperature rise.

This figure shows the number of years it would take to use up those budgets, if the level of annual emissions remained as they are today. The available carbon budget – if we want a two thirds chance of meeting the 1.5°C target – is just 240 Gt CO2 . At the current rate of annual emissions this would be used up in just six years. After that point, there would have to be ‘net zero’ carbon emissions for the rest of the century. Source: Limits Revisited: A Review of the Limits to Growth Debate (April 2016)

Go here for more on carbon budget background or click on image for full report

22 September 2014, Inside Climate News, Climate Primer: Explaining the Global Carbon Budget and Why It Matters: Once the amount of CO2 in the atmosphere tops 3.2 trillion metric tons, chances dim to avoid climate disaster, according to new calculations. For as long as scientists and policymakers have been grappling with climate change, they’ve been up against two critical questions: How much extra carbon has mankind sent into the atmosphere? And how much more can be added before global warming becomes disastrous? Climate researchers have spent decades tracking and quantifying the complex flows of carbon into and out of the atmosphere, but those questions couldn’t be answered convincingly until 2009. That’s when a group of European scientists published a groundbreaking and highly credible global carbon budget that filled the information void. Using a comprehensive climate model, the scientists determined the maximum amount of greenhouse gases mankind could send into the atmosphere without triggering catastrophe—and then found that more than a quarter of that budget had been spent by 2006.

What is a carbon budget?

It’s an estimate of the maximum amount of greenhouse gases that can be released into the atmosphere over time and still keep warming limited to a specified level. In many cases, carbon budgets are pegged to holding the average global temperature increase below 2 degrees C compared with the beginning of the Industrial Age in the 18th Century. Accelerated burning of fossil fuels over the past 2½ centuries has poured billions of tons of carbon into the atmosphere, causing global surface air temperatures to warm already by an average of 0.8 degrees C. Scientists have estimated that 2-degree warming would trigger a host of more drastic changes in the climate, including effects that would be irreversible. Most carbon budgets focus solely on emissions of carbon dioxide, or CO2. That’s because it’s by far the largest contributor to global warming. Others, such as the carbon budget cited by the United Nations-led Intergovernmental Panel on Climate Change, include estimates for other greenhouse gases such as methane. For simplicity and consistency, this discussion refers only to carbon budgets that track CO2 emissions.  In 1992, nations participating in climate treaty talks through the UN Framework Convention on Climate Change agreed to hold human-caused global warming below a level that would cause “dangerous” climate change. That led to the 2-degree benchmark and an agreement to consider lowering that goal to 1.5 degrees. Researchers from Germany, the U.K. and Switzerland, led by scientist Malte Meinshausen of the Potsdam Institute for Climate Impact Research, are widely credited with being the first—in 2009—to combine all of those elements into a rigorous, comprehensive scientific model to calculate a 2-degree carbon budget. Since then, carbon budgets have become a staple of climate change analysis.

How big is the budget?

The answer depends on several variables and it’s constantly being adjusted. The September 2014 carbon budget from the Global Carbon Project, a consortium of university and government scientists and researchers, put the latest 2-degree limit at 3.2 trillion metric tons of CO2. According to the budget, if emissions stay below that mark, there is roughly a 66 percent chance that the world would not trigger the most destructive forces of climate change.

Where do we stand now? 

From 1870 to 2013, human activity added about 2 trillion metric tons of CO2 to the atmosphere, according to the Global Carbon Project. That means almost two thirds of the budget already has been used. The emissions came from burning fossil fuels for heat, electricity, factories, ships, planes, trains and automobiles, as well as from cement production, agriculture and land use changes.  Because fossil fuel emissions have accelerated over time, humanity is on track to use up the remainder of the budget in the next three decades—or perhaps as early as 2031. Read More here Access Global Carbon Project here

Another Opinion…

There are many in the scientific circles of climate change that are expressing the concern that there is NO carbon budget left. For the latest report concerning this access “Recount do the math again” by David Spratt, from Break Through site. Also access Two degree “safe limit” on The Science page of this site. 

Carbon emissions – nations with largest carbon footprint

May 2016, An interactive guide from British Gas about the world’s carbon emissions. Explore the Carbon Emissions of different countries and how nations across the globe are working to reduce their CO2 emissions. Access guide here

 

Carbon map – which countries are responsible for climate change?

23 September 2014, The Guardian: Access this interactive, in-depth map to find out who the big polluters are internationally, how China’s emissions have grown stratospherically and see who is most vulnerable to global warming’s impacts. Turn your sound up to hear the introduction to the map. Access map here

NOAA: Earth System Research Laboratory – History of atmospheric carbon dioxide from 800,000 years ago until January, 2014.

Source: NOAA Global Monitoring Division

10 March 2016, Washington Post: Atmospheric carbon dioxide concentrations have spiked more in the period from February 2015 to February 2016 than in any other comparable period dating back to 1959, according to a scientist with the National Oceanic and Atmospheric Administration’s Earth System Research Laboratory. The change in average concentrations from February of last year to February of this year was 3.76 parts per million at the storied Mauna Loa Observatory in Hawaii, leaving the concentration at 404.02 parts per million for February, based on preliminary data. Pieter Tans, lead scientist of NOAA’s Global Greenhouse Gas Reference Network, confirmed that the increase, reported previously by New Scientist, represented a record year-over-year growth for Mauna Loa. He also said that in addition to the stark rise in carbon dioxide levels over the past year, researchers have now observed four straight years of increases of more than 2 parts per million in the atmosphere. “We’ve never seen that,” Tans said. “That’s unprecedented.” Read More here

25 February 2016, Climate News Network, Fossil fuel use will have to fall twice as fast as predicted if global warming is to be kept within the 2°C limit agreed internationally as being the point of no return, researchers say.

Climate scientists have bad news for governments, energy companies, motorists, passengers and citizens everywhere in the world: to contain global warming to the limits agreed by 195 nations in Paris last December, they will have to cut fossil fuel combustion at an even faster rate than anybody had predicted. Joeri Rogelj, research scholar at the International Institute for Applied Systems Analysis in Austria, and European and Canadian colleagues propose in Nature Climate Change that all previous estimates of the quantities of carbon dioxide that can be released into the atmosphere before the thermometer rises to potentially catastrophic levels are too generous. Instead of a range of permissible emissions estimates that ranged up to 2,390 billion tons from 2015 onwards, the very most humans could release would be 1,240 billion tons. Available levels In effect, that halves the levels of diesel and petrol available for petrol tanks, coal for power stations, and natural gas for central heating and cooking available to humankind before the global average temperature – already 1°C higher than it was at the start of the Industrial Revolution – reaches the notional 2°C mark long agreed internationally as being the point of no return for the planet. In fact, the UN Framework Convention on Climate Change summit in Paris agreed a target “well below” 2°C, in recognition of ominous projections − one of which was that, at such planetary temperatures, sea levels would rise high enough to submerge several small island states. The Nature Climate Change paper is a restatement of a problem that has been clear for decades. Carbon dioxide proportions in the atmosphere are linked to planetary surface temperatures and, as they rise, so does average temperature. For most of human history, these proportions oscillated around 280 parts per million. Read More here

23 March 2016, Think Progress, How can global CO2 levels soar when emissions are flat? The CO2 Bathtub Analogy

Avoiding catastrophic warming requires stabilizing CO2 concentrations (or levels) in the atmosphere, not annual emissions. Studies find that many, if not most, people are confused about this, including highly informed people, mistakenly believing that if we stop increasing emissions, then global warming will stop. In fact, very deep reductions in greenhouse gas emissions are needed to stop global warming.

One study by MIT grad students found that “most subjects believe atmospheric GHG concentrations can be stabilized while emissions into the atmosphere continuously exceed the removal of GHGs from it.” The author, Dr. John Sterman from MIT’s Sloan School of Management, notes that these beliefs “support wait-and-see policies but violate conservation of matter” and are “analogous to arguing a bathtub filled faster than it drains will never overflow.”

See long description below

CREDIT: EPA

While atmospheric concentrations (the total stock of CO2 already in the air) might be thought of as the water level in the bathtub, emissions (the yearly new flow into the air) are the rate of water flowing into a bathtub from the faucet. There is also a bathtub drain, which is analogous to the so-called carbon “sinks” such as the oceans and the soils. The water level won’t drop until the flow through the faucet is less than the flow through the drain. Similarly, carbon dioxide levels won’t stabilize until human-caused emissions are so low that the carbon sinks can essentially absorb them all. Under many scenarios, that requires more than an 80 percent drop in CO2 emissions. And if the goal is stabilization of temperature near or below the 2°C (3.6 °F) threshold for dangerous climate change that scientists and governments have identified, then CO2 emissions need to approach zero by 2100. So the first key point is that CO2 levels will continue rising if we merely keep annual CO2 emissions flat. In fact, they will keep rising at a faster and faster rate because the land and ocean carbon sinks are weakening (see below).

The Temporary Impact Of El Niño

NOAA reported two weeks ago that the CO2 concentrations “measured at NOAA’s Mauna Loa Observatory in Hawaii jumped by 3.05 parts per million during 2015, the largest year-to-year increase in 56 years of research.” That is a big jump compared to the average annual rise at Mauna Loa from 2005 to 2014 of 2.11 ppm per year. But the second-highest single-year growth rate for CO2 levels was back in 1998, which saw a jump of 2.93 ppm (whereas the average annual rise from 1995 to 2004 was 1.87 ppm per year). You may notice a pattern here — big jumps during big El Niño years. “El Niño years tend to be bad years for plant growth, due to things like widespread drought or other extreme weather,” Stefan Rahmstorf, co-chair of Earth System Analysis at the Potsdam Institute for Climate Impact Research, explained in an email. “So the biosphere loses some carbon. You see that happening in 1998 as well. Below is a diagram from the AR5, you see from the squiggly line how variable the land sink is, it dominates interannual variability in the carbon budget.”

Annual man made CO2 emissions and where they end up. The partitioning is between the ocean sink (dark blue), the atmosphere (light blue) and the land sink (green). CREDIT: IPCC

CO2 levels: Are we permanently above 400 PPM?

20 May 2016, Renew Economy, Just three years ago this month, the carbon dioxide monitoring station atop Hawaii’s Mauna Loa reached a significant milestone: the first measurement of CO2 climate 1concentrations that exceeded the benchmark of 400 parts per million (ppm). Now, they may never again dip below it. As CO2 levels once again approach their annual apex, they have reached astonishing heights. Concentrations in recent weeks have edged close to 410 ppm, thanks in part to a push from an exceptionally strong El Niño.

But it is the emissions from human activities that are by far the main driver of the inexorable climb of CO2 concentrations in the atmosphere. That trend, in turn, is driving the steady rise of global temperatures, which have set record after record in recent months. Those CO2 levels will soon begin to drop toward their annual minimum as spring triggers the collective inhale of trees and other plant life. But because of the remarkable heights reached this year, the fall minimum, unlike recent years, may not dip below the 400-ppm mark at Mauna Loa. “I think we’re essentially over for good,” Ralph Keeling, the director of the Mauna Loa CO2 program at the Scripps Institution of Oceanography, said. And before too long, that will be the case the world overSteady Rise Atmospheric carbon dioxide levels are monitored at stations around the world, providing records of the mark humans are leaving on the planet. Keeling’s father, Charles Keeling, began the recordings at Mauna Loa in 1958, revealing not only theclimate 2 annual wiggles created by the seasonal growth and death of vegetation, but the steady rise in CO2 from year to year. The resulting graph, dubbed the Keeling Curve in his honor, became an icon of climate science…..Mauna Loa isn’t the only spot poised to move permanently above 400 ppm, though. The Cape Grim station in remote northwestern Tasmania saw its first measurements above 400 ppm on May 10. Now that it has reached that level, it will not dip below again, the scientists who maintain the site told the Sydney Morning Herald. This is particularly significant because Cape Grim had yet to reach that mark, in part because the Southern Hemisphere has a less pronounced seasonal cycle than the Northern Hemisphere because it has more landmass and plant life. The majority of carbon dioxide emissions also come from the Northern Hemisphere and take about a year to spread across the equator……Keeling suspects that the only places on the globe that may see levels dip below 400 ppm this summer will be at the highest latitudes (which have higher seasonal swings). They could perhaps do so again next summer, but then the planet as a whole will be above 400 ppm for the foreseeable future. And while that benchmark is somewhat symbolic — the excess heat trapped by 400 ppm versus 399 is small — it serves as an important psychological milestone, Keeling said, a way to mark just how much humans have emitted into the atmosphere. And with levels this year already nearing 410 ppm, “you realize how fast this is all going,” he said. Keeling is hopeful, though, that with the signing of the Paris agreement and signs of action to limit emissions by various national governments, the iconic rise of the Keeling Curve will start to plateau. “If Paris is successful, this curve will look very different in a matter of five or 10 years because it will start to change,” he said “And I hope we see that.” To read full report access here For more data go to Climate Central’s Flirting with the 1.5°C Threshold”

What does CO2 equivalents (CO2-e) mean? 

The following is taken from the Climate Change Connection website: Charts and tables in this emissions section of their website convert all greenhouse gas (GHG) emissions into CO2equivalents so they can be compared. Each greenhouse gas (GHG) has a different global warming potential (GWP) and persists for a different length of time in the atmosphere. The three main greenhouse gases (along with water vapour) and their 100-year global warming potential (GWP) compared to carbon dioxide are: 

  • carbon dioxide (CO2) – 1 x
  • methane (CH4) – 25 x more powerful
  • nitrous oxide (N2O) – 298 x more powerful

Water vapour is not considered to be a cause of man-made global warming because it does not persist in the atmosphere for more than a few days.

There are other greenhouse gases which have far greater global warming potential (GWP)but are much less prevalent. These are sulphur hexafluoride (SF6), hydrofluorocarbons (HFCs), and perfluorocarbons (PFCs). There are a wide variety of uses for SF6, HFCs, and PFCs but they have been most commonly used as refrigerants and for fire suppression. Many of these compounds also have a depleting effect on ozone in the upper atmosphere.

GLOBAL WARMING POTENTIAL (GWP) TABLE: The following table shows the 100-year global warming potential for greenhouse gases reported by the United Nations Framework Convention on Climate Change (UNFCCC). Click here to download an expanded PDF table: GHG Lifetimes and GWPs (144 kB)

How to read this table: The column on the right shows how much that chemical would warm the earth over a 100 year period as compared to carbon dioxide. For example, sulphur hexafluoride is used to fill tennis balls. The table shows that a release on1 kg of this gas is equivalent to 22,800 kg or 22.8 tonnes of CO2. Therefore, releasing ONE KILOGRAM of sulphur hexafluoride is about equivalent to driving 5 cars for a year! (2)

Greenhouse Gas
Formula
100-year GWP (AR4)
Carbon dioxide CO2 1
Methane CH4 25
Nitrous oxide N2O 298
Sulphur hexafluoride SF6 22,800
Hydrofluorocarbon-23 CHF3 14,800
Hydrofluorocarbon-32 CH2F2 675
Perfluoromethane CF4 7,390
Perfluoroethane C2F6 12,200
Perfluoropropane C3F8 8,830
Perfluorobutane C4F10 8,860
Perfluorocyclobutane c-C4F8 10,300
Perfluoropentane C5F12 13,300
Perfluorohexane C6F14 9,300

 

NOTE: The GWP values were changed in 2007. The values in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) in 2007 were refined from the IPCC Second Assessment Report (SAR) values used previously and are still in much of the literature. Refer also to sub page, “Other  sources of GHGs”

19 February 2020, Carbon Brief: Methane emissions from fossil fuels ‘severely underestimated’. Human-caused emissions of methane from the extraction and use of fossil fuels may have been “severely underestimated”, a new study suggests. The research indicates that “natural” emissions of fossil methane, that seep out of deeply-held reserves, make up a much smaller fraction of total methane emissions than previously thought. This means that the levels of fossil methane in the atmosphere are likely being driven by the methane escaping as coal, oil and natural gas are mined, drilled and transported. The implication is that methane emissions from fossil fuels are 25-40% higher than earlier estimates suggest, the lead researcher tells Carbon Brief. The findings indicate that “the fossil-fuel industry is likely responsible for an even larger proportion of recent climate change than we previously thought”, a scientist not involved in the study tells Carbon Brief. However, there is also “greater opportunity” to cut emissions, she says, through “fixing leaks in natural gas extraction and distribution networks”. Read more here

5 December 2016, The Conversation, Nitrogen pollution: the forgotten element of climate change. While carbon pollution gets all the headlines for its role in climate change, nitrogen pollution is arguably a more challenging problem. Somehow we need to grow more food to feed an expanding population while minimising the problems associated with nitrogen fertiliser use. In Europe alone, the environmental and human health costs of nitrogen pollution are estimated to be €70-320 billion per year. Nitrogen emissions such as ammonia, nitrogen oxide and nitrous oxides contribute to particulate matter and acid rain. These cause respiratory problems and cancers for people and damage to forests and buildings. Nitrogenous gases also play an important role in global climate change. Nitrous oxide is a particularly potent greenhouse gas as it is over 300 times more effective at trapping heat in the atmosphere than carbon dioxide. Nitrogen from fertiliser, effluent from livestock and human sewage boost the growth of algae and cause water pollution. The estimated A$8.2 billion damage bill to the Great Barrier Reef is a reminder that our choices on land have big impacts on land, water and the air downstream. Read More here

GHG Emission Data

4 August 2015, The Conversation, Reducing emissions alone won’t stop climate change: new research. Based on current greenhouse gas emissions, the world is on track for 4C warming by 2100 – well beyond the internationally agreed guardrail of 2C. To keep warming below 2C, we need to either reduce our emissions, or take carbon dioxide out of the atmosphere. Two papers published today investigate our ability to limit global warming and reverse the impacts of climate change. The first, published in Nature Communications, shows that to limit warming below 2C we will have to remove some carbon from the atmosphere, no matter how strongly we reduce emissions. The second, in Nature Climate Change, shows that even if we can remove enough CO2 to keep warming below 2C, it would not restore the oceans to the state they were in before we began altering the atmosphere. 

How we’re tracking? Currently, we’re at 400 parts per million – rising from 280 ppm before the industrial revolution. To project future climate change the Intergovernmental Panel on Climate Change (IPCC) uses a range of emissions scenarios called Representative Concentration Pathways (RCPs), based on different economic and energy use assumptions. In the high scenario, RCP8.5, emissions continue to grow from our present rate of 37 billion tonnes of CO2 per year to about 100 billion tonnes of CO2 in 2100, when atmospheric CO2 levels are projected to be 950 ppm. This scenario assumes little mitigation of our carbon emissions.In the low scenario, RCP2.6, emissions rise slowly till the end of this decade to about 40 billion tonnes CO2 each year and then start to decline. Amongst the IPCC emission scenarios, only the RCP 2.6 appears capable of limiting warming to below 2C. With RCP 2.6 at the end of the century atmospheric concentrations is about 420 ppm, and only 20 ppm above the present value. Present emissions are tracking close to the highest scenario (RCP8.5). If we want to keep warming below 2C it requires a substantial reduction in the amount of CO2 released into the atmosphere. Read More here

From Guardian story on China.…. The problem for those fighting to keep global warming within 2C though, is that Chinese demand has expanded so fast that anything short of a dramatic cut in coal use – something no one is even advocating – leaves terrifying amounts of carbon dioxide pumping into the atmosphere. Read More here

gcpcorrectedlarge

list-countries-co2-per-capita

global_energy_percent 2013

Latest in depth analysis of Co2 and CO2 – e measurements

19 February 2015, European Environment Agency: Atmospheric greenhouse gas concentrations (CSI 013/CLIM 052) – Assessment: Key policy question: Will the atmospheric concentration of all greenhouse gases remain below 450 ppm CO2-equivalent, giving a 50% probability that the global temperature rise will not exceed 2 degrees Celsius above pre-industrial levels?

Key messages

  • The global average concentrations of various greenhouse gases (GHGs) in the atmosphere continue to increase. The combustion of fossil fuels from human activities and land-use changes are largely responsible for this increase.
  • The concentration of all GHGs, including cooling aerosols that are relevant in the context of the 2oC temperature target, reached a value of 435 parts per million (ppm) CO2 equivalents in 2012, an increase of about 3 ppm compared to 2011. As such the concentration continued to close on the threshold of 450 ppm.
  • In 2012, the concentration of the six GHGs included in the Kyoto Protocol had reached 449 ppm CO2 equivalent, an increase of 171 ppm (around +62%) compared to pre-industrial levels.
  • The concentration of CO2, the most important GHG, reached a level of 393 ppm by 2012, and further increased to 396 ppm in 2013. This is an increase of approximately 118 ppm (around +42%) compared to pre-industrial levels.

 

Excerpts key assessment

The various greenhouse gases each affect the climate system differently (see rationale). To evaluate the GHG concentration in the atmosphere in relation to temperature change, it is important to consider all greenhouse gases, i.e. the long-living GHGs under the Kyoto Protocol, those under the Montreal Protocol (direct and indirect), as well as ozone, water vapour and aerosols (IPCC, 2013). Considering these gases, the total CO2-equivalent concentration reached a level of 435 ppm CO2 equivalent. in 2012 [2]; an increase of 3.3 ppm compared to 2011. The increase is slightly higher than the average increase of the annual concentration over the past decade (i.e. is now 2.9 eq.yr-1).  

Overall, assuming a concentration threshold of 450 ppm CO2 equivalent could result in a 2oC temperature change (see rationale), this means concentrations can only increase by about a further 15 ppm before this threshold value is exceeded. Assuming the 2000-2012 trend of annual increase of total GHG concentrations will also continue in the coming years, the threshold value may be exceeded in about 5-10 years. The lower band of the uncertainty range has been exceeded already around the millennium change, whereas it may take 20-25 years before the upper uncertainty band is exceeded.

Access full analysis with interactive graphs here

When emission reduction isn’t all that it seems – UK as an example

1 June 2015, The Conversation, Climate targets are letting ‘outsourced emissions’ slip through the cracks: Just because a country meets its emissions-reduction targets doesn’t mean it isn’t responsible for increased emissions elsewhere. This isn’t as weird as it sounds. The way national targets are calculated means some countries effectively “outsource” their emissions to other regions. If countries such as the UK don’t include the global emissions impact of their economy they run the risk of believing they are staving off climate change when they are not….Greenhouse gas emissions are usually considered in terms of those emitted within national boundaries; for example by cars and industries. These “territorial emissions” are the basis of national commitments and governments can influence them through taxes or regulations on emissions.

In the UK, the general trend is towards a reduction in these territorial emissions, though it’s tough to say exactly what has happened over the past three years as there is a bit of a lag before annual statistics can be reported.

Territorial and Consumption Basis GHG, UK 1997– 2012 DECC final emissions estimates (updated March 2015); Defra consumption emissions March 2015

However, it is instructive to take a wider perspective. Rather than considering the emissions that occur within the UK’s borders, we could think in terms of the emissions that are given off in the process of providing the goods and services enjoyed by its citizens.

Global problems need global targets

This “consumption-based” perspective looks at the whole life cycle of products consumed in a nation and reveals that supporting British lifestyles actually causes the emission of far more greenhouse gases than those emitted in the UK alone. This is because the UK’s imported goods require, on average, more greenhouse gases to be emitted during their production than the goods it exports. While goods and services are imported, emissions are effectively “outsourced” to other nations. This matters because greenhouse gas emissions have a global impact – the UK will be affected just as much by one tonne of carbon emitted in Shanghai as Sheffield. The UK has developed and signed up to a number of strategies and targets to reduce emissions, most notably the Climate Change Act which legally obliges an 80% reduction in greenhouse gas emissions by 2050. However unless emissions are addressed on a global scale, we run the risk of frustrating the purpose of these strategies by shifting the burden from our shores to others. Looking at emissions based on consumption also gives us a clearer picture of which goods and services actually “drive” greenhouse gas pollution. It’s often not the processes directly responsible for the emissions….

Comparing emissions from each sector in the UK to those emitted to satisfy consumption of different goods and services. Analysis based upon WIOD

This presents us with an opportunity. By reducing consumption of these goods and services and by making environmentally sound choices, we can have a far greater effect on global emissions. This can be seen clearly in the first chart above; between 2007 and 2009, the UK’s consumption-based emissions reduced far more dramatically than its territorial emissions have at any other time. This was, of course, due to the recession reducing imports of goods but these emissions remained at the lower level throughout 2010 and 2011. Reduced consumer confidence and deferrals in infrastructure investment will have played their part but the possibility of lower consumption-based emissions has been demonstrated and so there is the tantalising possibility of this lower emissions level persisting. If so, this somewhat unintentional effect may turn out to be the most significant “green” achievement over this last government’s term. The challenge will be continuing this in the context of a stronger economy. Read More here

 

The slow response (lag time) of the climate system

Figure 2.6 shows estimates of the time it takes for different parts of the climate system to respond to a situation where emissions are reduced to equal the rate of natural removal. While greenhouse gas concentrations stabilise in around a hundred years, the temperature and sea-level rise due to thermal expansion of the oceans takes much longer to stabilise. The melting of ice sheets is still increasing the sea level even after a thousand years.

Figure 2.6 Inertia in the climate system

Source: IPCC (2001b: Figure 5.2), reformatted for this publication.

 Access full Garnaut Review Chapter 9 here and Chapter 2 here

Not sure what carbon neutral/offsetting means? This might help

Global Carbon Project

To become carbon neutral, first reduce all possible emissions and impacts and then contribute to a measured reduction elsewhere to balance the rest

The Global Carbon Project has published the report “Carbon Reductions and Offsets” with a number of recommendations for individuals and institutions who want to participate in this voluntary market.

 

Recommendations from the report are below:

 

Source: Global Carbon Project (2008) Carbon reductions and offsets. Coulter L, Canadell J, Dhakal S. Global Carbon Project Report No. 6, ESSP Report No. 5, Canberra.

Carbon Offsets

“Modern-day indulgences, sold to an increasingly carbon-conscious public to absolve their climate sins” – James Hansen

Three_fish_in_a_tree

Source: Seuss Wikia (click on graphic for full report) 

December 2014, Carbon Trade Watch Report: A TREE FOR  A FISH – The (il)logic behind selling biodiversity: Putting a price on ecological systems has been around for several decades, although it was especially heightened during the UN climate negotiations with the introduction of the carbon market, a system which places a monetary value on the carbon-cycle capacity of nature for trade in financial markets.

The carbon market quickly became “the only game in town” that policy-makers and multilateral agencies would discuss and implement regarding climate change policy. Following this logic, the 2010 UN Convention on Biological Diversity (CBD) called for “innovative financial mechanisms’” to deal with biodiversity loss, making biodiversity offsets the standard buzzword within conservation debates. At the same time, people have been resisting projects that claim to compensate for biodiversity destruction and continue to demonstrate how this concept fails to address the drivers of environmental and social damage.

Biodiversity offsets entail projects that cause destruction to biodiversity such as housing, highways or open-pit mines. These destructive projects are allowed to ‘compensate’ for any destruction of habitats or ecosystems, by implementing a project somewhere else which would theoretically protect or (re)create another habitat or ecosystem. To measure the economic ‘value’ of biodiversity, proponents affirm that accounting units are necessary, and hence, different biodiversity types, locations, times, and contexts are turned into apparent ‘equivalent’ numbers. The argument goes that the destruction in one place is ‘equivalent’ to the supposed protection, or re-creation, of another place.

The Economics of Ecosystems and Biodiversity (TEEB) project, led by Pavan Sukhdev, a former economist from the Deutsche Bank, advanced the idea of incorporating an economic ‘value’ of biodiversity into governmental and corporate decision-making. Hosted by the UN Environmental Program and funded by the EU Commission, Germany, the UK, the Netherlands, Norway, Sweden, Japan, and other governmental agencies, TEEB also received support from consultancy firms like Pricewaterhouse Coopers, NGOs like Conservation International, the Institute for European Environmental Policy (IIEP), among others. TEEB claims that the economic value of nature would make ‘nature’ visible to financial markets and consequently, loss of biodiversity would be stopped………

How are offset developers planning to inform the birds of their ‘new home’? The idea of ‘(re)creating’ a ‘new habitat’ elsewhere will almost certainly not be able to compensate for the loss of their ancient habitat. Ecological systems are linked with each other. One cannot ‘preserve nature’ on one part of a country while destroying another part, and claim that this is ‘balancing’ the loss. Whole ecosystems, animals’ behaviours like hunting and migration, plants, waterways, wind cycles, biodiversity, among many other ‘capacities’ of the ‘natural world’ are carefully and harmoniously linked. Offsets enable the colonization – and thus destruction – of the ‘natural world’ in search of economic gains.

…….Reports concluding remarks: Reducing complex and interconnected ecosystems to a single monetary value reduces the ‘natural world’ into tradeable ‘units’ largely for corporate interests. Proponents claim that biodiversity offsetting is “the only option” to get business on board. But we have heard that argument before with the adoption of the carbon market. After over ten years, we can conclude that framing the market and the financialisation of nature as the “only possible option” is a lucrative method for destructive industries and practices to continue expanding their businesses. The idea that “price will solve biodiversity loss or pollution” has colonised peoples’ imaginations and forcibly ignored the many other positions and knowledges. Offsets impose a hegemonic view on how to perceive the world. A world where nature, biodiversity, forests, and rivers, can be separated, and quantified into homogenous units that can be ‘re-created’, ‘replaced’, ‘moved’ or ‘restored’ according to economic and costrelated ‘values’.

In this world, extractive industries, largescale infrastructure and monoculture tree plantations can continue their social, environmental and climatic destruction while selling themselves as ‘green’ and ‘sustainable’. People defending territories, biodiversities, forests, lakes, rivers and all the interconnected ecosystems with which they have co-existed for centuries are the ones ‘preserving’ and promoting real options for environmental protection and social change. The offsets (il)logic subjugates nature and its people, and forces them to become providers of ‘services’ that ‘work’ towards the accumulation of capital for a few pockets. Read full report here

Access Carbon Trade Watch Carbon Offsets Fact Sheet here

Access Carbon Trade Watch Cap & Trade Fact Sheet Here

 

Carbon Pricing

17 June 2015, CDP, Carbon price ask transcends corporate politics: The United Nations announced last week during the Bonn climate negotiations that it would take six European oil and gas companies up on their offer of support to establish a global carbon-pricing system.  The proposal, which came from firms including Royal Dutch Shell and Total SA, was both unexpected and encouraging.  But its significance transcends corporate policies.

Pricing carbon is key to investors’ understanding of the risks corporations face if they do not manage their climate change exposure, as well as new revenue opportunities inherent in addressing climate change head on. Over the past 15 years, CDP has been gathering and synthesizing information on how companies have been using carbon pricing in their internal planning.  We’ve been able to keep a close track of this growing trend. In 2014 we published a report showing how 150 companies globally already incorporate a price on carbon emissions into their business decision-making. These companies fully expect carbon emissions will one day have to be capped and regulated worldwide.  Associating a dollar cost with each ton of carbon emitted now, before required, is a way to prepare for future regulation and a smart strategy for early adopters. Read More here

27 May 2015, Carbon Brief, Carbon pricing schemes climb to $50bn, despite Australian backtracking: The value of carbon pricing schemes rose to $50 billion in 2015, according to a new assessment by the World Bank. It outlines its findings in the latest edition ofCarbon Pricing Watch, which examines the state of the world’s carbon markets in advance of its more detailed report due later this year. As of 1 April 2015, emissions trading schemes were valued at $34 billion, up from $32 billion the previous year. This was despite the repeal of Australia’s carbon pricing mechanism in July 2014 at the hands of prime minister Tony Abbott.

Emissions trading schemes are not the only way to put a price on carbon. For the first time, the World Bank has also valued carbon taxes across the world, which it finds amount to $14 billion. The World Bank calculated the value of emissions trading schemes by multiplying the allowances issued for each scheme, multiplied by the price. Estimates of the price of carbon taxes were based on government budgets for 2015, or by the greenhouse gas emissions covered by the carbon price on 1 April 2015. All in all, emissions are currently being priced in 39 nations and 23 subnational jurisdictions, as the World Bank map shows below.

Screen Shot 2015-05-26 At 13.11.18

Map of existing and potential carbon pricing schemes. Source: World Bank Carbon Pricing Watch 2015

Comparison

The report says in 2015, carbon pricing covered around 12% of the world’s emissions.

The actual volume of carbon that was covered by a carbon price in 2015 rose slightly from the previous year, from almost 6 gigatonnes of carbon dioxide equivalent up to 7 gigatonnes, the World Bank report says.

Over the last decade, the picture has changed more dramatically, as the graph below shows. In 2005, only 4% of the world’s annual greenhouse gas emissions were priced, and almost all of this was a result of the EU’s newly launched emissions trading system (EU ETS). Read More here

 

Want to understand how carbon credits work in the “real” world?

Narmboolville

13 May 2015, An innovative game to explore the range of futures open to the pastoral industry within a carbon economy has been launched by Federation University Australia. The game, Narmboolville, is based on the Sovereign Hill property Narmbool, 15 km south east of Ballarat. It brings together environmental science, accounting and information technology and is the culmination of a two-year research project supported by the Williamson H.D. Trust and Sovereign Hill Museums Association.

 “We saw Narmbool as a fantastic location to demonstrate the options that may present themselves for agriculture into the future, not least because of the excellent environmental education program associated with the property,” Professor Peter Gell, one of the co-ordinators of the project, said. “The main challenge was the real interdisciplinary nature of the project as we wanted to ensure that the game was based on real scientific data and real carbon accounting approaches. “We then let the IT boffins loose to create a really engaging game that tests your skills as a farm manager.”

The objective of this project is to bring together the principles of carbon sequestration and livestock management to encourage sustainable farm management practices under a range of future climate scenarios. The game, developed under the guidance of project co-coordinator Dr Charlynn Miller from FedUni, requires the user to secure an income from carbon but also seek to maintain an economically viable farm business. 

In essence the user becomes the farm manager, making decisions about the trade-off between managing for trees and agricultural production. The game is freely accessible via the University’s Narmbool game website.

When starting the game, you can choose how much carbon you would like to sell as Australian Carbon Credit Units (ACCUs). ACCUs are regulated carbon credits issued by the Clean Energy Regulator for Australian sequestration or emission reduction projects. When you choose the amount of stored carbon to sell as ACCUs, keep in mind that a risk of reversal buffer will be deducted from your ACCUs. The larger the buffer size, the less ACCUs you will be issued upfront but the greater chance you will be able to maintain the carbon storage for 100 years. Basically, you promise to store carbon in the land and trees of Narmbool for 100 years and get paid to do it! Just make sure you manage the property well so that you don’t go broke in the meantime!