29 August 2015, Climate News Network, Climate models may misjudge soils’ carbon emissions. How soil organisms cope with decaying vegetation is much less certain than climate models suppose, researchers say, and carbon emission estimates may be wrong. Some of the microscopic creatures which live in the soil are able to digest dead plants and trees, turning their contents into gas and minerals. But researchers say their work show that our understanding of how organic material is decomposed is fundamentally wrong, calling into question some current climate models. The researchers, from Lund University, Sweden, and the University of New Hampshire, USA, have published their study in the journal Ecological Monographs. They say it means that climate models which include micro-organisms in their estimates of future climate change must be reconsidered. When plants or trees die, their leaves and branches fall to the ground and the organic matter which is absorbed by the soil is then decomposed, mainly by the activity of fungi and bacteria, which convert the dead materials into the main greenhouse gas, carbon dioxide, and mineral nutrients. Until now, the Lund team says, scientists had thought that high-quality organic materials, such as leaves that are rich in soluble sugars, were mainly decomposed by bacteria, leaving the lower-quality matter, like cellulose and lignin, to be broken down mainly by fungi. Expectations confounded. Previous research has suggested that organic material decomposed by fungi results in less CO2 and nutrient leakage compared with matter decomposed by bacteria. This is important for the climate models in use today, as any change in the loss of CO2 and mineral nitrogen would alter the soil’s contribution to greenhouse gases and eutrophication, the process in which the release of excessive chemical pollution causes algal blooms in watercourses. Read More here
Category Archives: The Science
26 August 2015, NASA The fingerprints of sea level rise. When you fill a sink, the water rises at the same rate to the same height in every corner. That’s not the way it works with our rising seas. According to the 23-year record of satellite data from NASA and its partners, the sea level is rising a few millimeters a year — a fraction of an inch. If you live on the U.S. East Coast, though, your sea level is rising two or three times faster than average. If you live in Scandinavia, it’s falling. Residents of China’s Yellow River delta are swamped by sea level rise of more than nine inches (25 centimeters) a year. These regional differences in sea level change will become even more apparent in the future, as ice sheets melt. For instance, when the Amundsen Sea sector of the West Antarctic Ice Sheet is totally gone, the average global sea level will rise four feet. But the East Coast of the United States will see an additional 14 to 15 inches above that average. Read More here
24 August 2015, Climate Code Red, As 2015 smashes temperature records, it’s hotter than you think. There is an El Nino in full swing which helps push average global temperatures higher, and records are being broken, but just how hot is it? For several years, we have heard that global warming has pushed temperatures higher by around 0.8 to 0.85 degrees Celsius (°C). But in 2015, that number is not even close. Even before this year’s strong El Nino developed, 2015 was a hot year. The first few months of the year broken records for the hottest corresponding period in previous years all the way back to the start of the instrumental record in 1880. Each month, new records fell.
With the July data in, the US Government’s National Oceanic and Atmospheric Administration reported that July was the hottest month among the 1627 months on record since 1880, and the first seven months of the year was the hottest January-July on record: The July average temperature across global land and ocean surfaces was 0.81°C above the 20th century average. As July is climatologically the warmest month for the year, this was also the all-time highest monthly temperature in the 1880-2015 record, at 16.61°C, surpassing the previous record set in 1998 by 0.08°C. The July globally-averaged sea surface temperature was 0.75°C above the 20th century average. This was the highest temperature for any month in the 1880-2015 record, surpassing the previous record set in July 2014 by 0.07°C. The global value was driven by record warmth across large expanses of the Pacific and Indian Oceans. The year-to-date temperature combined across global land and ocean surfaces was 0.85°C above the 20th century average. This was the highest for January-July in the 1880-2015 record, surpassing the previous record set in 2010 by 0.09°C. As 2015 smashes temperature records, it’s hotter than you think. Read More here
18 August 2015, Atmospheric Chemistry and Physics, Abstract. The injection of sulfur dioxide (SO2) into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. The related reduction of radiative forcing depends upon the injected amount of sulfur dioxide, but aerosol model studies indicate a decrease in forcing efficiency with increasing injection rate. None of these studies, however, consider injection rates greater than 20 Tg(S) yr−1. But this would be necessary to counteract the strong anthropogenic forcing expected if “business as usual” emission conditions continue throughout this century. To understand the effects of the injection of larger amounts of SO2, we have calculated the effects of SO2 injections up to 100 Tg(S) yr−1. We estimate the reliability of our results through consideration of various injection strategies and from comparison with results obtained from other models. Our calculations show that the efficiency of such a geoengineering method, expressed as the ratio between sulfate aerosol forcing and injection rate, decays exponentially. This result implies that the sulfate solar radiation management strategy required to keep temperatures constant at that anticipated for 2020, while maintaining business as usual conditions, would require atmospheric injections of approximately 45 Tg(S) yr−1 (±15 % or 7 Tg(S) yr−1) at a height corresponding to 60 hPa. This emission is equivalent to 5 to 7 times the Mt. Pinatubo eruption each year. Read More here