28 March, Science Daily, Climate change: Greenland melting tied to shrinking Arctic sea ice. Vanishing Arctic sea ice. Dogged weather systems over Greenland. Far-flung surface ice melting on the massive island. These dramatic trends and global sea-level rise are linked, according to a study coauthored by Jennifer Francis, a research professor in Rutgers University’s Department of Marine and Coastal Sciences. During Greenland summers, melting Arctic sea ice favors stronger and more frequent “blocking-high” pressure systems, which spin clockwise, stay largely in place and can block cold, dry Canadian air from reaching the island. The highs tend to enhance the flow of warm, moist air over Greenland, contributing to increased extreme heat events and surface ice melting, according to the study. That, in turn, fuels sea-level rise, said Francis, who called rising seas a “monstrous” issue for coastal communities around the world. The increased melting on the Greenland ice sheet in recent years may also be linked to cooler-than-normal ocean temperatures south of the island, slowing ocean circulation. The study, published online in the Journal of Climate last month, tapped computer models and measurements in the field. “I think this study does a good job of pinning down the fact that the [Arctic sea] ice is disappearing for a whole bunch of reasons — and that is causing the surface of Greenland’s melt area to increase,” Francis said. The Greenland ice sheet holds an enormous volume of frozen water, and the global sea level would rise about 20 to 23 feet if it all melted, the study notes. Surface melting of the ice sheet has increased dramatically since the relative stability and modest snow accumulation in the 1970s, the study also notes. Read More here
Monthly Archives: March 2016
28 March 2016, Climate News Network, Plants’ heat response means fiercer heatwaves. Asia faces more extreme heat by mid-century as some plant species react unexpectedly to rising average temperatures, new research shows. Tomorrow’s heat waves could be even hotter than climate scientists have so far predicted. Maximum temperatures across the Asian continent from Europe to China could be 3°C to 5°C higher than previous estimates – because the forests and grasslands will respond in a different way. Australian scientists report in the journal Scientific Reports that they looked at the forecasts made by the Intergovernmental Panel on Climate Change under the notorious “business-as-usual” scenario, in which the world’s nations go on burning ever more fossil fuels, to release ever more greenhouse gases. The average global temperatures will rise steadily – but this rise will be accompanied by ever greater and more frequent extremes of heat. But then Jatin Kala of Murdoch University in Perth, Western Australia, and colleagues factored in the responses of the plants to rising temperatures.They looked at data from 314 species of plant from 54 research field sites. In particular, they investigated stomatas, tiny pores on the leaves through which plants absorb carbon dioxide and shed water to the atmosphere. Response crucial What matters is how vegetation responds to extremes of heat. Researchers have already established that plants respond, not always helpfully: extremes can alter the atmospheric chemistry unfavourably for plants, and certainly reduce crop yields. But other scientists have confirmed the so-called carbon dioxide fertilisation effect: as more carbon becomes available, plants use water more economically and so even though drylands may get drier the landscape can also get greener, and growth tends to begin ever earlier as winters get warmer, and spring arrives earlier. Read more here
28 March 2016, NASA, 2016 Arctic sea ice wintertime extent hits another record low. Arctic sea ice appears to have reached a record low wintertime maximum extent for the second year in a row, according to scientists at the NASA-supported National Snow and Ice Data Center (NSIDC) and NASA. Every year, the cap of frozen seawater floating on top of the Arctic Ocean and its neighboring seas melts during the spring and summer and grows back in the fall and winter months, reaching its maximum yearly extent between February and April. On March 24, Arctic sea ice extent peaked at 5.607 million square miles (14.52 million square kilometers), a new record low winter maximum extent in the satellite record that started in 1979. It is slightly smaller than the previous record low maximum extent of 5.612 million square miles (14.54 million square kilometers) that occurred last year. The 13 smallest maximum extents on the satellite record have happened in the last 13 years. The new record low follows record high temperatures in December, January and February around the globe and in the Arctic. The atmospheric warmth probably contributed to this lowest maximum extent, with air temperatures up to 10 degrees Fahrenheit above average at the edges of the ice pack where sea ice is thin, said Walt Meier, a sea ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Read More here
28 March 2016, Energy Post, Wake up call for oil companies: electric vehicles will deflate oil demand. The major oil companies greatly underestimate the impact electric vehicles will have on their market, write independent energy advisors Salman Ghouri and Andreas de Vries. According to Ghouri and De Vries, the trends currently underway in the auto industry are likely to have a substantial impact on oil demand in the medium term, and even a devastating impact in the longer term. If there is one event in history that has shaped the crude oil industry, it is the popularization of the internal combustion engine (ICE) by the auto industry. At the beginning of the 20th century, coal and wood were the dominant sources of energy, together providing more than 90% of global energy consumption. From 1910 onward, however, the Automotive Revolution triggered by Henry Ford spurred on demand for liquid fuels, causing crude oil’s contribution to global energy supply to more than double every decade. Consequently, by 1970 crude oil had taken top-spot in the global energy mix. Continued growth in the transportation sector ever since has provided the world’s oil companies with plenty of organic growth opportunities. And judging by the energy outlooks the major oil companies have published, they appear to expect this status quo to continue. For example, BP’s most recent Energy Outlook 2035 assumes that non-oil based transport will grow just 5% per annum for the next 20 years, and that essentially all of this growth will be in the gas-powered transport segment. Similarly, The Outlook for Energy: A View to 2040 published by ExxonMobil assumes that by 2040 “plug in” electric vehicles (EVs) and fuel cell vehicles (FCVs) will have no more than a 4% market share. Chevron, meanwhile, has indicated that it plans on the basis of the assumption that the auto industry will remain fundamentally the same for at least another 50 years. Alternative assumptions However, as we documented elsewhere, the auto industry itself expects its future to be radically different from its present. To assess how the new vision of the auto industry would impact crude oil demand, we have developed an Alternative Energy Outlook (AEO). Read More here